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ABSTRACT

The objective of this work is to study the effect of the relative densities of the
components in fluid-solid mixture using the formulation presented in Johnson et al,
(1991 a,b). The mixture theory is modified to include the effect of buoyancy forces;
for this purpose we introduce a term, As v gradp, in the mechanical interaction
between mixture components. When coefticient Ay is zero, we recover the results
presented in Johnson et al, (1991 ab). Itis expected to see settling of the solid
particles toward the lower plate which is normally related to the “buoyancy effect” in
solid-fluid mixtures. Equations for two-component flows are used to analyze
Poiseuille flow between two parallel plates. A review of the basic principles of the
mixture theory is presented. The equations for the stress tensor of each component
of the mixture and the interactions between the components are given. Flow of a
fluid-solid mixture between plates is presented with numerical methods and results.

1. INTRODUCTION

Since there is a wide variety of applications for flow of mixtures in industry,
multicomponent systems have become the subject of éxtensive studies in the last few
decades. In this paper, (luid-solid mixtures will refer to a fluid with entrained solid
particles, where the fluid can be either a liquid or a gas. Fluidized beds, pneumatic
and hydraulic transport of solid particles are some of the examples of the fluid-solid
mixtures in industry. Eapecially the flow behavior of fluid-particle mixtures in
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transport lines has been of interest in many chemical processes for many years. For
example, a great deal of research has been devoted tothe use of coal-based slurries
as retrofit fuels. In general, empitical relations that predict, for example; the flow and
pressure drop.in such processes have been developed for specific ranges of solids and
fluid properties-as well as for various geometries.

Another area of research which has received attention is that of fluidization.
Because the Ruidized particles are separated from one anether by the fluid, intimate
contact between the particles and the fluid is achieved. Hence, a bed of Huidized
particles is an excellent mediom for the transfer of heat or mass between solid
particles and fluids. Flowing granular materials has also become an interesting area
for studies, since they represent a limiting case of two-phase flow at high solids
concentration and. high solid-to-fluid density ratios. Many situations, such as
discharge through bin outlets, flow through hoppers and chutes, natural phenomena
such as avalanches or debris flows present challenging cases. To fully describe and
predict the flow and-behavior of these complex flows, different multiphase theories
have been proposed and used. As indicated by the extensive literature, either
averaging or mixture theory is used to model multicomponent systems.

The mixture theory was first presented within the framework of modern
continum mechanics by Truesdell (1984, 1992) who studied the interaction between
several constituents by geperalizing the equations and principles of 4 single
continuum. The fundamental assumption in this theory is that at any instant of time,
every point in-space is.oceupied by one particle from each constituent. Both theories,
averaging and mixiure require constitutive relations for the stress tensors and for
interaction between components, for the case of a purely mechanical problem where
thermal, chemical, or electro-magnetic effects are not considered. The. historical
development of mixture theory can be found in the review articles by Atkin and
Craine (1976), Bedford and Drumheller (1983), Bowen (1976), Truesdell (1984),
Homsy et al (1980), Ahmadi (1980, 1982), Passman and Nunziato (1986), and
Massoudi (1986) where such an approach for modeling fluid-solid systems has been
used.

The mixture of fluid and solid particles considered in this paper is assumed to
be a purely mechanical system; thermal effects and chemical reactions are ignored. In
this theory, which is sometimes also called the theory of interacting continua, it is
assumed a priori that each of the components that makeup the mixture are present at
each point in space. -In other words; each point in space is occupied by a particle
belonging to each constituent homogenized over the current configuration. The
governing equations are written for each constituent and the interactions between the
constituents, ¢.g,, the conversion of one constituent into the other or the supply of
mass, momentuni, and energy from one constituent to the other, are incorporated into
the equations through an appropriate constitutive theory. Mixture theory has been
successfully implemented, through the works of Rajagopal, et al, in studying flows
of fluids through elastic rubber and flow through porous media, For an excellent and
thorough review of these issues, the reader is referred to the book by Rajagopal and
Tao (1995).
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The two major concerns in the constitutive modeling of two phase flows are
the modeling of the stress tensor for the solid phase, and the modeling of the
interactive forces, For the latest and on up-to-date review of the existing models {or
granular matenals, i.e, thesolid phase, we refer the reader to the work of Hutter and
Rajagepal (1994). For a review of the interaction mechanisms we refer the reader to
Johnson etal (19940)

While mixture theory has been rigorously outlined, (cf Truesdell's Rational
Thermodynamics) at times many have found it necessary to modify the theory for a
certain application or a clags of problems. One such modification which has a relevant
and similar relatiopship to the present work is the study of Katsube and Carroll (1987
ab). In their analysis of the flow through porous matenials, they introduced a new
kinematical quantity named porosity, and through this term, the individual stresses
were accordingly modified.  Similarly, the objective of the present study 15 to modify
or rather extend the mixture theory proposed by Johnson, Massoudi, and Rajagopal
{1991 b} so that the effect of fluid pressure is ncluded in the equation of motion for
the solid particles. This term, is sometimes referred to-as the buoyancy force. The
present study, in that sense, relies heavily on the works: of Johnson, Massoudi, and
Rajagopal, and builds on their development and use of mixture theory. A detailed
presentation is given in Briggs (1995)

2, THE BASIC EQUATIONS IN MIXTURE THEORY
In this section we provide a summary of the equations of motion fior & mixture of &
fluid and solid particles. The details are to be found in Rajagopal, et al, (1990),

Johnson, et al, (1991 ab), and Rajagopal and Tao (15994,
The mixture density, p. is given by

Py =P1+Pzs (1)

where py and p: are the densities of the mixture components in the eurrent
configuration given by

P=®pr P VRg, )
where pyis (he density of the pure fluid, p. is the density of the solid particles, and v

is the volume fraction of the solid component and @ is the volume fraction of the
fluid. For a saturated mixture, = l-v The mean velocity v of the mixture is:

Pm¥=PivitPave (3)

where v, and v, are the velocities of the fluid and solid components respectively.
Conservation of mads equations for the Muid and solid are:
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dp . )
6tl‘+°d“’ (pivi) =0, (4)
apz .

el E . 2)=0

o div (Pav)=9, )

It is assumed that there is no mass conversion between two components, If
Ty and T; denote partial stress tensors of the fluid and solid, respectively, then linear
momentum equations become;

D . .
"'_éfi“‘dwmmw; (©)

Dav .
Pz“éﬁ“‘d” T2+pyba- (7

where b represenis the body force, and § represents the mechanical interaction
between the components. The balance of moment of momentum implies that:

T+ T2=T +T] ®)

The partial stresses need not be symmetric.

In the majority of fluid-solid mixtures, the fluid is either a gas-or water. It is
appropriate fo assume that the fluid behaves as a linearly viscous fluid, with the
constitutive equation [Massoudi (1986), Johnison (1991)}:

Tr=[-plo) + e (P DI+ 21 (p) Dy, @

where pis the fluid pressure, & and jrare the viscosities, Dy is the symmetrie part of
the velocity gradient tensor for the fluid, and ¥ is the identity tensor.. 1f the fluid is
compressible, then an equation of state is needed forp,

Here, it is assumed that the stress tensor for.a granular material is given by
{Rajagopal and Massoudi (1990), Goodman and Cowin (1972), Savage (1979)]

Ts=[By (o) * B, (py) grad py e grad p, +§, (p) trD,] 1

5 . (10)
B3 (p) D3+ B (py)eradp, gradp,

where - denotes the scatar product of two vectors, and & denotes the outer, or the

tensor product of two veetors. Rajagopal and Massoudi (1990, 1994) have outlined

an experimental/theoretical approach to determine these material moduli. In the

above equation, By is similar to pressure in a eompressible: fluid, Bi and B, are the

material parameters that reflect the distribution of the granular materials, By is akin to
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the second coefficient of viscosity in a compressible fluid, and P is the viscosity of the
granular materials, This model allows for normal-stress differences, o feature which
is observed in densely packed granular materials as well as other non-linear fluids or
solids. Bovle and Massoudi (1990), using Enskog's dense gas theary, have obtained
explicit expressions for the material moduli By through B,

We can also define a mixture stress tenser in the following way.

Tm=Ti+ Tz, (1)
where
T1=(=-Tr> Tr=% (12)

In this way, the mixture stress tensor reduces to that of a pure fluid as v—0 and to
that of & granular materidl as v—v,, where vau, 15 the solid fraction for maximum
packing. Ty may also be written as Ta = vT,, where T, Is the stress tensor for some
densely packed reference eonfiguration of the granular materials.

2.1 Interactions

Tehen (1947) synthesized the work of Basset, Boussinesq, Stokes, and Oseen on the
motion of a sphere settling under the force of gravity in o fluid at rest. The resulting
force balance, sometimes known as the Basset-Boussinesq-Oseen (BBO) equation has
been the subject of extensive studies since then (¢f. Johnson et. al, (1990) for the
references). The basic equation is

dng’ . 2ma’

Pl . . pru-6myupau
3 3
) 3 (13}
: a e 4ma
'bn“anﬁﬁ 'Hl;dlr- 3 Blpg-pr)
¢ E

where u is the velocity ofthe particle, 1 is the time derivative of u, py and p, are
the density of the fluid and particle, respectively, a is the panticle radius, g is the
acceleration of gravity, peand vy are viscosity and kinematic viscosity of the fuid
respectively. The terms o the right hand side of Equation {13 ) reflect the presence
of virtual mass, Stokes drag, Basset history effects, and buoyaney, respectively.
There have been many modifications to this equation Lo include unsteady flows, flows
where the fluid is also in motion, ete. A basic effort in multiphase flow studies has also
been to obtain @ ‘similar® equation where the ‘interactive’ forces between the two-
components (in two-phase flows for example) can be studied.  And of course, many
studies have started with & modification of this equation to multiphase flows

Johnson et al (1990} proposed the following form for the mechanical
interaction between the mixture components; [y
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=1/

Fi1= Argrad ¥+ A7 F(v) (va - vi) + A2 DF Y " D (va - vy)

AW - Wi lvz=v) + Asaim,

(1)

where a,., is @ properly frame invariant measure of the relative scceleration between
the mixture components and F{v) represents the dependence of the drag coefficient
on the volume fraction. The first term reflects the presence of density gradients. The
second term in the equation above represents the effect of drag, the third one
represents the slip-shear lift or Saffman’s lift force and the fourth is the spin lift, and
the lust term is the virtual mass force. A detailed historical development on each term
in the above equation can be found in Johnson et al. (1990).

2.2 Inclusion of the buoyancy Ternt

When & single particle is immersed in a fluid which has a different density, the particle
will experience a force called *buoyancy® force. For a simple sphere immersed in a
Huid medium, where the only body force is that of gravity, a simple caleulation would
yield

FB =P VsB EVAR2-(VA * Vil B (15)

where f is thenet buoyancy force, p, is the density of the sphere, pr is the density of
the Nuid, ¥, I8 the volume of the sphere, ¥V, is the volume of the fuid above the
sphere, and g is the acceleration due 1o gravity. This equation can be simplified to

B = VsB(p,=Pg)= 2 (ms-myr) (16)

where m,and my are the mass of the sphere and the mass of an equal volume of fluid,
respectively. Though it seems that the motion and behavior of a single particle in a
Muid, for various cases, is understood [cf. Tehen (1247), Maxey and Riley (1983),
Soo (1975), Ounis and Ahmadi (1989)], when we have an assembly of particles, ie |
a dense suspension, different torces such as drag, lift, ete. would have a different
meaning.  This holds tnee also for the ‘buoyancy® force. In general, whether the
buoyancy force is due to the density differences, or different temperatures giving rise
to different densities (Bousinesq's approximation in the natural convection studies),
or different pressure tields causing one phase to move with respect 1o the other phase,
it seems that spmetimes the buoyancy foree acts in the direction of motion, as is the
case of a single sphere immersed in a luid, and sometimes it acts in other directions,
possibly normal to the direction of motion, as.is the case of Segre and Silberberg
experiments, who called this effect ‘particle migration”. Whether, this can be called
a ‘buoyancy’ force of a 'lift’ foree, or . is an interesting issue; neveriheless, as part
of the modeling effort one has to try 1o include the effect{s) of such force(s)
Juckson (1985) proposes that the terny, vdiv Ty should represent buoyancy
effects of the fluid on the particles. This term _was not added “naturally” to the
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momentum equation and it does not-appear to be consistent with the mixture theory
formulation. There are, in general, few experiments that can be effectively used for
modelling efforts. Most of the experiments are done for the sedimentation problems,
Huang et al. (1971) have modeled the sedimentation of the blood, but they made very
restrictive assumption that the particle velocity did not depend upon time or position:
Whelan et-al. (1971) also made experimental measurements of the concentration
profile for the case of Erythrocyte (red cell) sedimentation in human blood. Soo
(1967) also had experimental results for flow with sedimentation. Segre and
Silberberg (1962 ab) observed that spheres in faminar Poiseuille flow through a pipe
(at low Re) accumulate irr an annulus some distance from the tube axis. Following the
iniitial observations, a number of investigators verify this “tubular pinch’ effect and
attempt to explain the lateral {or lift) force acting on the spheres {of. Johnson, ¢t al.,
{1990y}

I1i this paper we propose to-add the so-called buoyancy term in the mechanical
interaction §i. That s, a term.such as ~h(v)grad p is added to the interaction, where
h{v) needs to-be measured experimentally. We can assume as a first approximation
that h{v) = Ay v. With this, the modified formyof the interaction term, fm; takes the
following form:

fong = Aygrad v+ A3 F(v) (v - vp) + Az v(2tr D]z)'i/‘il)l (vz-vp)
+ AgVIW2 - W vz - vi) + Asavm- Ag v grad P,

Notice that when A,= 0, we recover the equation proposed by Johnson et al , (1990).
The dimensionless forms of the governing equations for two components flows based
onthe constitutive relations given by Equations (9), (10), and (14) are derived by
Johnson et al., (1991 a,b): For a steady fully developed flow between two parallel
plates, the velocity profiles and solids distribution can be assumed to have the form:

v = Uly)i

va=Uly)i (18)
v=yly)

The equations for conservation of mass, i.e., Equations (4) and (5) are satisfied

automatically. Substituting (18) and using Equations (9) (10), and (17) into

Equations (6) and (7) and following the procedure which was outlined in Johnson et

al, (1991 ab) with regard to approximating Po-Bs and non-dimensionalizing the
equations, we obtain the following equations:

) ,
¥V V'V’-%%Re+C2ReF(v)(U-V)mG {19
2.

3 ]
ve- 22 cvivr2viu-vy- B - vi=0 (20)
(‘}Y Fr
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oP

Byllvty M @2v VU 20 F(v) (U- V)+v5§ 0 (21
Bov (Bt BHRZ(I+v+yH)vv' + Qv+ 1) (V)
V@s riolf Tyt ap (22‘
B v VYV (U- V)t v =0
T Cyv|VY (U-V)ty pee
whers
Re Polol p US 23)
e Lg

The first two equations are for the fluid component in the X and Y directions
respectively. Equations (21) and (22) are for the solid particles; and p,, U, L are
reference quantities used in non-dimensionalizing the equations, and Re and Frare the
Reynolds and Froud numbers, respectively.

The buovancy term, -v grad P vanishes in the limiting case as v-—>0. If¢=0,
there is no fluid, which means there is no intéeraction between the solid and fluid.

Boundary Condition

As we can see front the system of Equations (19) - (22) we need to-specify two
boundary conditions for the fluid velocity V, two boundary conditions for the solid
velocity U, two boundary conditions for the volume fraction v, and two boundarv
conditions Yor the fluid pressure, P.  As with all the numerical studies of
incompressible fluids, the pressure drop, which appears in the equations of motion as
the gradient of the pressure, causes difficulties. In general, the pressure is eliminated
by cross differentiating the momentum equation for the fluid, and thus eliminating the
pressure term accordingly. This however, raises the order of the differential
equations, and as a result there is now a need to provide additional boundary
conditions on the velocity fields. Johnson et al,, (1991 .4.5) used this approach. ‘In the
present study, however, due to the inclusion of the so-called buoyancy force, depicted
as h(v) grad P, the pressure term also appears in the momentum equations for the
solid particles (Equations 19-and 20). Thus, we need to devise a numerical scheme
for this issue. The details are givenin Briggs (1995). Adherence boundary conditions
are applied on both constituents at each plate;

UD=UI V(-D)=v(1)=0 (24)

The mass flow rate of the mixture is also prescribed as a condition. For-.a two-
component mrixture; it is:

Qm N 10-vipe vV vp UIAY 25)
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Sometimes, instead we can use a volumetric flow rate which is given by:
Q= {a-v)v+vUlaY

Equations (25) and (26) are related by Q= pQ for a neutrally buoyant mixture,
meaning where pe= p,.

For problems where gravity and bugyancy effects are important, the flow rate
of the mixture should be the boundary condition to be specified, since it contains
densities of the components. We havé two boundary conditions for v: a-value of v at
a plate, and a prescribed average volume fraction, defined by

N=f vay

For non- symmetric solutions we need to specify N and a value for v{-1) as the
boundary conditions. Then v(1) is determined from the solution, for the case of
positive density difference, defined as prp.. For the case of negative density
differences; popr, v{-1Yis the value obtained from the solution in the case of positive
density difference problem as v(1). This is done to verify the accuracy of both
solutions.

3. NUMERICAL METHOD AND RESULTS

The method used here is'the collocation method. The details of using COLSYS code
are described in the header of the program. The code is capable of solving mixed-
order systems of boundary value problems in ordinary differential equations. Error
tolerances on the volume fraction, solid velocity, fluid velocity, integral boundary
conditions, and their derivatives are specified as 107, The system of equations is
rewritten as six equations including two integral boundary conditions for solution
using COLSYS. Defining the variables by

Yi=NY2=Q.Y3=P, Y4=v,Y5=v,Y6=U Y7=U,Y8=V.YI=V
Equations (19)-(22), Equations (26 and (27) are expressed in terms of the notations
defined in Equation (28).

The boundary conditions according to the defined notations are as follows {pr-
Pr0).
Y1(-1)=0,Y2(-D)=0,Y4(-))=1, Y6(-1)=0,Y8(-1)=0
Y1{)= 12, Y2(1)= 13, Y6(1) =0, Y8 (1)=0. (30)

For negative density differences,
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YIGCID=0,X200)=0,Y6(-1)=0, YB{-1)=0, i1y
Y1{l)=12.42(1)= r_»,,Y-I[!}=1i."r’(v{]}=ﬂ,‘r’ﬂ“]-' 0 {3)

For each case, ta1s specified as 3.0, and w3 as 0.6, Although they give very good
mathematical results, those numbers have to be verified experimentally. The reference
value of P is specified at (0,0). The value of P is given as 1.0 for symmeetric solutions
and 0.1 for non-symmetric solutions. In order to evaluate the validity of the buoyancy
term inserted into the mechanical interaction term, calculations are made and results
are presented below

Since we are using a similar scheme to that used by Johnson (1991), we will
only present the cases where the buoyancy term is studied. That is, if we sel Ag=0 in
Equation (17} and in the subsequent equations, we recover the equations solved in
Johnson et al, (1991 a,b) and we used this to check the aceuracy of vur numerical
scheme

Figure | shows volume fraction profiles for various values of dimensionless
solid density: Physically, as the difference between the fluid density and the solid
density gets bigger, granular particles tend to move tawards the upper plate, so the
boundary conditions should be specified in accordance with this buoyancy effect,
Clearly, for & fixed value of the fluid density, the solid particles move away from the
upper plate owards the lower plate, as the value of the solid density increases.
Though the buoyancy effect docs not directly influence the vélocity profiles, it affects
the velocities indirectly through its influgnce on the volume fraction. The influence
of v on the velocily profiles is to cause a relative decrease in the fluid velocity in the
arcas of higher solid concentration and an increase in areas of lower solid
concentration. These effects are illustrated in Figures 2 and 3

Figure 4 shows volume fraction profiles for various values of dimensionless
fluid density. At a fixed solid density value, the solid particles move away from the
upper plate tawards the lower plate, as fluid density decreases. Figures 5 and 6 show
the buoyaney effect on the velocitics through their influence on the volume fraction
Figure 7 shows volume fraction profiles for different density differences. For fluid
density value smaller than the solid density, solid particles move towards the lower
plate.  This result is consistent with the form of the buoyancy interaction, which
depends on the density differences. As buoyancy becomies more important, we expect
to see decreasing solid concentration at the lower plate. Figures 8 and 9 illustrate the
influence of the density differences on the velocity profiles. Note that the mass flow
rate of the mixture is used in this case and is constant for each case. The lighter the
fluid is, the faster it moves, The velocity of the solid particles also increase due o the
coupling of equations. The buoyancy also affects the velocities through its influence
on the volume fraction. These results are consistent with the form of the drag
interaction, which depends upon v (becoming greater as v increases). Physically drag
transfers momenium from the fluid 1o the solid particles. Those effects can be seen
more clearly as the relative density difference gets bigger as shown in Figures 10
through 13
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Figure 9 Effect of Bouyancy on Fluid Velocity Profile; p, = 1.0, 0.1,p,=0.1, 1.0,
Cy=0, L=0,B,=-50,B,=-50 ,Re=10,Fr=1,B=035,D, =2, D, =10,

-3



oo R

20

1.0

0.8

0.6

0.4

02 |

~0.2

Briggs-etal.

DENSITIES
F=0.01 S=1.0
. B v

seeaa d FONON S VR L Lad i

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Solid Velocity, Dimensionless

Figure 10 EBffect of Bouyancy on Solid Velocity Profile; p, = 1.0, 0.01, p, =0.01, 1.0,
C,=0,L=0B,=-50,B,=-50 ,Re = 10, Fr=1,B =05, D, =2, D, =10,

B;v—':-l



Flow of A Dense Particle Mixturs

0.8

{ o
- e
fiea

DENSITIES
F=0.01 S=1.¢

_F=1L0 $=0.01

P

| TETCERISaN

-1.0 ==
0.0

2.0 4.0 6.0 §.0 10.0 12.0
Fluid Velocity, Dimensionless

21

Effect of Bouyancy on Fluid Velocity Profile; p, = 1.0, 0.01, p.=00.1, 1.0,
C,=0,L=0B,=-50,B,=-50 ,Re =10, Fr=1,B=0.5,D,=2, D, =10,
B, =1

Figure 11



22

1.0

0.8

0.6

0.4 |-

0.2

=0.2
~-0.4
~0.6
-0.8

~1.0

Figure 12

Briggs:et al.

DENSITIES
F=0.001 S=L.0
—

zh‘_“j,, | TR P WS, [T i

0.0

1.0 20 310 40 SO0 60 7.0 80
Solid Velocity, Dimensionless

Effect of Bouyancy on Solid Velocity Profile; p, = 1.0, 0.001, p,=0.001,

L0, C=0,L=0,8,=-50,By= -50;, Re =10, Fr= 1, B =0.5,D, =1,
Dl 510, 31 = 1



Flow of A Dense Particle Mixiurs

DENSITIES
F=0.001 §=1.0
=10 5-0.00]

i

TErTTTT]

0.8

0.6 [

0.4
z | N

/

_loLC,f,JfJ,A_L, P T B (L ST Lo BAL, ST ARE S0 TUL 788 |

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Fluid Velocity, Dimensionless

Figure 13 Effectof Bouyancy on Fluid Velocity Profile; p; = LO;. 0.001 ,p, = 0.001,
1.0, C=0, L=0,B;=-30, B, = -50;, Re =10, Fr=1, B=0.5, D, =2,
Di :IO. B1 = 1

23



Briggs et al.

4. NOMENCLATURE

a aceeleration vector

A relative aceeleration bétween components
A interaction coefficients, i=1t6 5

b body force vector

B; dimensionless B's, i=0 to'd

B, constant part of B’

B dimensionless parameter p=1,.2
G dimensionless At's, =210 5
Cp  dimensionless Ai’s, i=2t0 5
Cu Basset force coeflicient

C.n  virtual mass coefficient

b stretching tensor

D dimensionless parameteri=1i, 2

fi interaction force vector

F deformation gradient

F volume fraction dependence of drag

Fr Froude aumber

g gravitational acceleration

| identity tensor

L characteristic length

L gradient of velocity tensor

L dimensionless parameter

N average volume fraction

p duid pressure

P dimensionless fluid pressure
Q volumetric flow rate of mixture
Q,  mass llow rate of mixture

Re Reynalds number

T stress tensor

Uy reference velocity component
solid velocity

velocity vector

fluid velocity

dimensionless velogity vector
spin fensor

direction of flow between the plates
position vector

deformation function
dimensionless position vector
direclion normal to plates
dimensionless Y
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Greek Letters
B granular solid coefficients (i=0-4)
by second coefficient of fluid viseosity
A dimensionless 3y
i first coefficient of fluid viscosity
v volume fraction of the solid
p density
Pu reference density
T dimensionless time
@ volume fraction of fuid
Subscripts
1,1 referring to the fluid phase
2.5 referring to the solid phase
m referring to the mixture
Superscripts
T Lranspose
™ dimensionless quantity
(Mher Symbols
Ve divergence operatar
v gradient operator
ir trace of a tensor
2 outer product
. dot product
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